Supplementary Fig. 1

Supplementary Fig. 1 (A) SEM image of native Xellulin. Scale bar: 10 um. (B) Different cell
types cultivated on Xellulin. Examples of human umbilical artery smooth muscle cells
(HUASMC, i), human umbilical cord-derived fibroblasts (HUCF, ii), human umbilical cord-
derived mesenchymal stem cells (HUCMSC, iii), and human hepatocytes (iv). Scale bars:
400 pum (i and ii), 200 pm (iii and iv).
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Supplementary Fig. 2 Quality control and HUVEC purity: Marker expression of freshly
isolated HUVEC. HUVEC cultivated both on collagen-coated culture plates (3 days in culture,
i and ii) and collagen-coated Xellulin (6 weeks in culture, iii and iv) were positively stained for
CD31 (red) and vWF (green). Nuclear counterstain was performed with DAPI (blue). Scale

bars: 50 um.
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Supplementary Fig. 3 Morphology and marker expression of HUVEC. (A) Phase contrast images of confluent
HUVEC. HUVEC were cultivated for two days on collagen-coated 6-well culture plates (i) and on collagen-coated
Xellulin (ii), and for seven months on Xellulin (iii). Scale bars: 100 um. (B) Detection of CD31 (red) and ZO-1
(green). Comparison of cross sections of an umbilical vein (upper row), and HUVEC cultured on Xellulin (lower
row). Nuclear counterstain with SYTOX green nucleic acid stain (blue). Scale bars: 20 um.
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Supplementary Fig. 4 Passaging of long-term HUVEC culture. HUVEC (passage 2) were
cultivated as confluent monolayer on Xellulin for one year. The cells were enzymatically
detached and re-cultured on collagen-coated 6-well culture plates (passage 3 to passage 7).
Passage 4 (to passage 6) cells were then re-seeded on collagen-coated Xellulin. HUVEC on
Xellulin (passage 4, a total of 14 months in culture) displayed typical cobblestone-like
morphology (i) and were still positive for CD31 (red) and CD34 (green, ii). HUVEC (passage 6)
cultivated on Xellulin were positive tested for CD31 (red, iii) and VWF (green, iv). HUVEC
passage 7 cultivated on a collagen-coated 6-well culture plate were also positive tested for
CD3L1 (red, v) and VWF (green, vi). Nuclear counterstain with DAPI (blue). Scale bars: 100 pm
(i), 50 um (ii-vi). Note that the localization of VWF was different depending on the cell carrier. In
standard cell culture, the protein was located around the nuclei, whereas in HUVEC grown on
Xellulin vWF was evenly distributed. The expression of CD31 on HUVEC revealed a different
morphology of the HUVEC with mostly polygonal shapes on standard plastic and usually
elongated cells on Xellulin (see also Supplementary Fig. 2).
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Supplementary Fig. 5 Data analysis of HUVEC transcriptomes. (A) Transcript abundance distributions of native and
cultivated HUVEC (solid line: unfiltered; dashed line: filtered). (B) Variance distribution of the transcriptome PCA per
principle component. (C) Hierarchical clustering of all transcriptome samples.
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Supplementary Fig. 6 (E) — (F)
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Supplementary Fig. 6 Detailed analysis of K-means cluster protein association networks using GLay community
clustering and DAVID annotation enrichment analysis. K-means cluster 1-6 are depicted in (A) - (F).
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Supplementary Fig. 7 Differential expression of proteins involved in important endothelial cell functions and ECM
and cell adhesion components (blue: non-significant; red: significant with Benjamini-Hochberg corrected p value <
0.05).
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Supplementary Fig. 8 Comparison of transcriptome and proteome of 3 and 6 week old Xellulin HUVEC samples. (A) PCA
of transcriptome samples (left panel: PCA plot, black: 3 weeks, red: 6 weeks; right panel: variance distribution of PC1 to
PC10). (B) t-test results of the transcriptome and proteome data; note that p values without Benjamini-Hochberg correction
are plotted. (C) and (D) STRING-derived protein network of transcripts up-regulated after 3 weeks (C) and 6 weeks (D) of
cultivation time.
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Supplementary Fig. 9 Transcriptome and proteome compositions decomposed according to KEGG categories using

Proteomaps and the relative abundance per global KEGG category.



Supplementary Fig. 10
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Supplementary Fig. 10 Expression of Angiopoietin-2 and ZO-1 in human umbilical vein endothelial cells (HUVEC), on
paraffin sections (top) and different cultures of HUVEC passage 1 as indicated. In long-term cultures with spontaneous tube
formation, endothelial cells were clearly positive for angiopoietin-2 suggesting differentiation towards blood vessels. Scale
bars 20 um.




Supplementary Fig. 11
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Supplementary Fig. 11 Expression of CD31 and CD34 in human umbilical vein endothelial cells (HUVEC), on paraffin
sections (top) and different cultures of HUVEC passage 1 as indicated. In older cultures on Xellulin and even more
pronounced in cultures with spontaneous tube formation, endothelial cells were clearly positive for CD34. Scale bars 20 pm.
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Supplementary Fig. 12 Expression of von Willebrand Factor (VWF) and vascular endothelial (VE)-cadherin in human
umbilical vein endothelial cells (HUVEC), on paraffin sections (top) and different cultures of HUVEC passage 1 as indicated.
In cultures of endothelial cells on Xellulin, cells were clearly positive for VE-cadherin, and very strongly in endothelial cells of
spontaneously formed capillary-like tubes. Scale bars 20 pum.




